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Random flights of massless particles and precursors 

Martin Andreas Schweizer 
Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, 
Alberta, T6G 2J1, Canada 
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Abstract. The diffusion of photons through a cloud of ionised plasma is considered. 
Phenomenological hyperbolic equations derived earlier from transient thermodynamics 
predict diffusion profiles which are typically double-peaked. The propagation of the 
diffusion front is cause1 and this gives rise to a precursor peak preceding the main diffusion 
peak. It is shown that this feature finds an explanation in terms of random walk theory. 
The configuration space for the displacements is taken to be Minkowski space and the 
random distributions are conc7.ltrated on the future light cone. 

1. Introduction 

The conventional theory of dissipative continuous media is based on equations of 
motion with parabolic characteristics and is, for this reason, afflicted with undesirable 
features such as infinite wavefront speeds for the transport of heat and viscous stresses. 
An extended and relativistic covariant theory, based on hyperbolic equations, was 
worked out by Israel (1976). The reader is also referred to Israel and Stewart (1979a, b, 
1980). This new theory, called ‘transient thermodynamics’, predicts subluminal charac- 
teristic velocities and one expectes that it should be particularly accurate in describing 
the arrival of signal fronts. 

The diffusion of photons through a radiative plasma is important in astrophysical 
problems. As was shown in an earlier paper (Schweizer 1984b, paper I ) ,  the general 
code of transient thermodynamics modifies the conventional diffusion equations just 
slightly: there is one single new term which guarantees that the diffusion front propa- 
gates causally. If the optical radius of the considered plasma is less than about twenty, 

preceded by a precursorpeak which propagates at the characteristic velocity 1/ yak 3 times is 
the diffusion profiles tend to be double peaked: the conventional diffusion 

the velocity of light. 
The appearance of the precursor has raised the question of whether this feature is 

nothing more than an artifact of the hyperbolic diffusion equations and has, in principle, 
nothing to do with reality. In addition, one needs to establish a lower bound for the 
range of optical thickness in which the phenomenological equations are applicable. 

The analysis of this paper is based on random walk models for massless particles. 
In order to account fully for the relativistic character of these particles, the configuration 
space for the displacements is taken to be the future light cone in Minkowski space 
instead of the three-space. 

For the case of one time plus one space dimension, random walk theory and 
transient thermodynamics provide identical results. The ( 1 +3)-dimensional case is 

0305-44701841142859 +07$02.25 @ 1984 The Institute of Physics 2859 



2860 M A Schiveizer 

less immediate. However, a Green function derived in paper I from the hyperbolic 
diffusion equations follows easily from a random walk model, and for the case of 
quasi-stationary sources, the two theories provide identical results. 

A numerical analysis of the diffusion equations shows that the profiles are rather 
insensitive to the detailed boundary conditions, provided the optical radius of the 
plasma is larger than about five. Together with the results derived in this paper one 
may, for this reason, conjecture that the transient thermodynamical diffusion equations 
are applicable down to optical radii as small as about five. But above all, it becomes 
clear that the precursor feature discussed in paper I is realistic and finds an explanation 
in terms of the particles which scatter into the forward direction only. Multiple-peaked 
luminosity profiles are common but ill understood in the context of observed X-ray 
transients. A thorough investigation of the hyperbolic diffusion equations and their 
implications is therefore worthwhile. 

In 0 2 ,  we present the hyperbolic diffusion equations derived in paper I. Special 
consideration is given to the (1  +I)-dimensional case. In 0 3, we present a random 
walk model for massless particles in ( 1  + 1 )  dimensions and show that the main result 
is identical with the corresponding one in § 2 .  In 0 4, we present a random walk model 
for the ( 1  +3)-dimensional case and discuss the overlap with transient thermodynamics 
as well as the range of applicability of the hyperbolic diffusion equations. 

2. The hyperbolic diffusion approximation 

The life-time T of a photon in a low-density radiative plasma at high temperature is 
typically large; for instance, for a plasma of order 10-9gcm-3 and a temperature 
T - 3 x IO' K, one has T - I O 3  s; see table 2 in Schweizer ( 1984a). If for a given situation 
the typical diffusion time t ,  is much shorter than T, then the collisions of the photons 
with the electrons are basically elastic and coherent, i.e. one has, to lowest order, 
Thomson scattering only. This defines a photon diffusion process which depends on 
the electron number density ne only, but not on the temperature or the equation of 
state of the plasma. 

The general hyperbolic diffusion equations accounting for all the relativistic effects 
such as gravitational redshift and Doppler shift have been derived earlier in paper I. 
If the space-time is flat and the plasma has constant density the diffusion equations 
are given by 

a N / a t  +V - J = S, 

KTJ +aJ/at  +$VN = 0. 

(1) 

( 2 )  

The term S (  t ,  x) in the continuity equation ( 1 )  denotes a source of photons placed 
inside the plasma cloud, N is the photon number density, J is the photon number 
three-current, and K T = ~ ~ I T T .  The only but crucial modification due to transient 
thermodynamics is the (a /a t )J  term in the transport equation ( 2 ) .  It is convenient to 
separate the variables N and J by differentiating (1) and (2) with respect to space 
and time. It follows that 

~ " = a N / a t + a ~ N / a t ~ - $ i N  =s+as/at, (3) 

aJ/at  + a 2 J / a t 2 - f v ( v .  J )  = -$S.  (4) 
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Notice that we have identijed t = ?;It and x = ATIx, where A T  = ( neuT)-'. We split the 
photon number density into N = No+SN, where No is a stationary part satisfying 
equation (3) with S = 0. At the boundary of the plasma, the distribution function P( t )  
of the photons as a function of their time of escape from the cloud is proportional to 
6N. It is, for this reason, sufficient to analyse equation (3) for 6N. 

As shown in paper I, the diffusion profiles associated with (3) are typically double- 
peaked: the diffusion frsnt reaches the boundary of the cloud with a precursor peak 
at the precursor time J3 R, where R denotes the optical radius. The main diffusion 
peak arrives later at the diffusion time t,=0.35 R2.  Quantitative results and some 
immediate implications with respect to the luminosity profiles of X-ray bursters have 
been discussed in paper I. The concern of this paper is to understand this precursor 
feature in terms of a consistent random walk model. 

To start with, we consider the restricted problem with one time and one space 
dimension. After rescaling the spatial variable by J3, equation (3) simplifies to 

~ ~ = a N / a t  +a2N/at2-a2N/ax2= s+as/at. (5) 

The Green function G satisfying the equation 

LG = S(x)6(  t )  

can be given in closed form as 

G(t, x) = i e ( t  - 1 ~ 1 )  e-"210[~(t2-~2)"2]. 

The solution of (5) is the convolution integral 

N = G * (S + d S / a t ) .  

We define the eflective Green function Geff by 

Geff * S = G * ( S  +aS/d t )  

or in other words 

G,fi=(l  +a/at)G 

= t a c t  - ] X I )  e- ' /2+fe(t-jxl)  e-'/' 

x [Io[;( t 2  - x 2 y 2 1  + t I , [ ; (  t 2  - X2)II2]/ ( t 2  - X y ] .  (10) 

The symbols I ,  and I ,  denote the modified Bessel functions of the first kind of order 
0 and 1, respectively. The first terms of the power series expansion of the analytical 
function in the square brackets in (10) are as follows: 

The (a /at )S term in ( 5 )  does not appear in the conventional diffusion equation. As 
we can tell from expression ( I O ) ,  this term is responsible for the precursor-type part 
I S (  t - 1x1) exp( - S t )  which accounts for all the photons which scatter into the forward 
direction only, i.e. move always on the initial light cone. It is obvious from this 
consideration that the conventional non-causal treatment of photon diffusion is a priori 
unable to provide precursors or to describe the arrival of the diffusion front properly. 
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3. Random flights of massless particles in (1 + 1) dimensions 

The description of random flights of massless particles requires special care: the particle 
velocity during a displacement is always equal to the speed of light c = 1, i.e. all the 
displacements occur on the light cone. The configuration space for the displacements 
should, for this reason, not be R3 but rather Minkowski space, and the random 
distribution T (  t, x) should be concentrated on the future light cone. 

We define the following random distribution on the ( 1  + 1)-dimensional Minkowski 
space describing a photon propagating on the light cone and having a mean free path 
of order unity: 

For a given space-time point ( t ,  x),  the number T (  t, x )  is equal to the probability 
W,(  t, x )  that the particle released at the origin is at ( t ,  x )  after one displacement. 
Notice that the space-time integral of T is normalised to unity. The probability W2( t, x )  
that the particle is at ( t ,  x )  after two displacements is equal to the convolution integral 
7 * 7, and more generally 

w ~ ( f ,  X ) =  7 * 7 * . . . * 7. - 
N factors 

For an introductory discussion of Markoff's method for random walk problems, the 
reader is referred to Chandrasekhar (1943). 

It is straightforward to compute W , ,  W2, W,, W,, etc directly from (13). For t > 0, 
the following identity proves to be helpful: 

e ( t - ~ X ' ~ + - x ' ~ )  = e ( t - l x l ) e ( ; ( t  + x ) - X ' ) e ( t ( t - x )  + x ' ) .  (14) 
One finds that 

W ,  = + a (  t - 1x1) e-', 

W, = ;s( t - 1x1) e-'(;[) ++e(  t - 1x1) e-', 

W, = f a (  t - 1x1) e-'( 1 /2 ! ) ( f t )~  +$e( t - 1x1) e-'$[, 

W , = $ ( t - l x l )  e-r(1/3!)(;t)3 + a O ( t - l x l )  e-'(& t2-&x2), 

and so forth. 

of displacements is given by the sum over all the probabilities W,, i.e. 
The probability W ( t ,  x)  that the particle is at ( t ,  x)  independently of the number 

a) 

W t , x ) =  c WN(f ,X)  
N = I  

(16) = f ~ ( t - ( x l )  e-"2+te(t-Ixl)(l +t t+&t2-&x2. .  . ) e-'/2 

A comparison of (16) with expression (10) and the expansion ( 1  1) suggests that 

W ( 4  x )  = G d t ,  XI .  (17) 

The proof of this goes as follows. The Fourier transform of 7 is given by 

1 -io 
(1 - io)* +p2 '  

?( o, p )  = I dx d t  eipx eiwrT( t, x)  = 
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The probability distribution wN(t ,  x )  is (see (13)) 

w,(t, X )  = ( 2 ~ ) - ~  I dw I dp e-ipx e-'"'[i(w, p)lN. 

The sum over all WN leads to the geometric series 

1 - iw 1 - i w  

This yields 
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(19) 

W (  t, X )  = ( 1  + a / a t )  w( t, x)  (21) 

where 

The integral (22) is, in fact, the Fourier representation for G ( t ,  x ) ,  or in other words 

W ( t , x ) = ( l  + a / a t ) G ( t , x ) = G , , ( t , x ) .  (23) 

This completes the proof. For t fixed, W ( t ,  x) is a probability distribution on the 
space-like surface t = constant. Since the particle reaches this surface after a finite 
number of displacements, the integral of W (  t, x )  over this space-like surface is equal 
to unity. 

The advantages of this relativistic treatment are obvious: it provides a proper 
description of the causal properties of the random walk process and leads automatically 
to the probability distribution independent of N. The phenomenological diffusion 
approximation is, in this case, exact and there is no need to go to the limit of large 
N. In non-relativistic treatments, the transition from the discrete parameter N to a 
continuous time t is, in general, not defined for small N, since the integrand in the 
Fourier transform of WN is the Nth  power of an oscillating function. All these 
difficulties disappear in the relativistic approach presented here. 

4. The (1 +3)-dimensional case 

The obvious generalisation of the random distribution (12) to (1 +3) dimensions is 

T (  t, x) = ( 1 / 4 ~ ) 6 (  t - r)e-'/r. (24) 

In order to compute W (  t, x), we start with the Fourier transform 

?( w, p )  = d t d3x e'"' e'" ' T (  t, x) = [( 1 - iw)2  +p2]-I. (25) i I  
This leads to the geometric series 

The resulting 
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is the Fourier representation of the Green function associated with the operator 

i = 2 a / a t  i-a21at2-h. (28) 

The poles of the integrand in (27) are in the lower half of the complex plane. It follows 
that 

Making use of the integral 3.876 in Gradstein and Ryzhik (1981), one can give W ( t ,  x) 
in closed form as follows: 

1 e-' 1 I , [ (  t' - p y ]  
W (  t ,  x) = - 6 ( t - r )  - +- e-'$( t - r )  ( t 2 - p 2 ) ' / 2  ' 4T r 471 

If we rescale times and lengths everywhere according to the prescription 

t'=2r, x' = 2/3x (31) 

the Green function (30) turns into 

This is the Green function associated with the linear operator 2 in (3). This ( 1  + 
3)-dimensional result is different from the corresponding ( 1  + 1)-dimensional one in 
as much as it does not provide Gefi but G. In other words, the diffusion process defined 
by the random distribution (24) does not cover the (a /a t )S  term in (3). This is, however, 
expected! Let us explain this in some more detail. 

( i)  At small optical depth R d 1, the observed characteristic velocity of the diffusion 
front depends on the time variation of the source S. For sources varying little over 
one mean collision time tT, the photon number density 6N is everywhere dominated 
by photons which have scattered with the electrons a couple of times already. Con- 
sequently, the effective velocity of the diffusion front is 1/43. If the source is highly 
transient, i.e. if most of the photons are released during a time period shorter than 
one mean free collision time, then the photon number density 6N at R S 1 is dominated 
by unscattered photons just released from the source. The effective velocity of the 
diffusion front is, in this case, equal to the speed of light. At larger and larger optical 
radii R > 1, the photon number density 6N is more and more dominated by scattered 
photons and the effective characteristic velocity decreases to 1/43. 

(i i)  In the (1 + 1)-dimensional case, the effective speed of the diffusion front is 
obviously always equal to the speed of light. This is, in fact, the reason that the random 
distribution ( 12) and transient thermodynamics provide identical results. 

(iii) The random distribution (24) is good for the description of diffusion processes 
with constant characteristic velocities. For quasi-stationary sources, S >> (a/at)S. After 
rescaling times and lengths according to the prescription (3 l) ,  the random distribution 
(24) provides the same diffusion process like equation (3 ) .  Conversely, for highly 
transient sources the characteristic velocity at R=s 1 is equal to the speed of light. 
Equation (3) is positively not applicable to this case. Random walk theory provides, 
on the other hand, the equation IW = S, where 1 is the operator (28). The characteristic 
velocity according to this equation is, as required, equal to the speed of light. 
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(iv) For highly transient sources, the diffusion process defined by the random 
distribution (24) is not applicable to the cases R > 1, since it does not account for the 
decrease of the effective characteristic velocity due to the increase in optical depth. 
The transient thermodynamical diffusion equation (3)  is, by contrast, sensitive to the 
effects caused by the rapid variation of S. A numerical analysis shows that for optical 
radii R > 5 the particular boundary conditions one chooses have little impact on the 
surface diffusion profile. And the diffusion front is anyway insensitive to the boundary 
conditions. This suggests that the transient thermodynamical diffusion equations are 
good for the description of cases R > 5 .  It remains, however, to be investigated what 
happens in the transition zone 1 < R < 5 ,  and how the ( a / a t ) S  term can be established 
consistently from random walk theory. 
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